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Introduction

Research in aeroelasticity with computational methods, including the nu-

merical prediction of flutter boundaries, requires a sophisticated algorithm

and computer code to simulate unsteady flow phenomena in three dimen-

sions. The purpose of this research is to develop an improved algorithm and

computer code for solving the unsteady three-dimensional Euler and Navier-

Stokes equations. These equations accurately describe the flow phenomena

for aeroelastic applications.

An algorithm that uses central differencing has being used in the com-

puter code, ENSAERO, for aeroelasticity at the NASA Ames Research Cen-

ter. However, modern upwind algorithms can produce more accurate solu-

tions for the Euler and Navier-Stokes equations. Among upwind algorithms,

a streamwise upwind algorithm has recently been developed by Obayashi

and Goorjian (see Appendix A). Most multidimensional upwind algorithms

are first constructed in one dimension and then extended to multiple di-

mensions by applying the one-dimensional procedure in each coordinate di-

rection. On the other hand, the present method follows the flow physics

more closely than the coordinate upwind methods. The steady-state com-

putations confirmed the higher resolution of the present algorithm over the

central-difference method as well as over other upwind methods.

The objective of this research is to update Ames's aeroelasticity code,

ENSAERO, by using the improved streamwise upwind algorithm. This re-

port summarizes briefly the work performed during the period, April 1, 1989



through March 30, 1991. Additional details on the various aspects of the

study are given in Appendices.

Research Efforts

The following specific objectives have been performed:

The algorithm was extended to handle the moving grid system. The

finite-volume concept is essential to extend the algorithm. The result-

ing algorithm is conservative for any motion of the coordinate system.

Two extensions to an implicit method were considered. The implicit

extension that makes the algorithm computationally efficient is imple-

mented into ENSAERO.

The new flow solver has been validated through the solution of test

problems. The test cases include three-dimensional problems with fixed

and moving grids.

Finally, the new flow solver has been implemented into NASA Ames's

aeroelasticity code, ENSAERO.

Results

In this work, only the first-order time-accurate methods are considered be-

cause of computational efficiency. However, time accuracy is an essential

requirement for aeroelastic computations. Numerical schemes used for flow

calculations in aeroelasticity must guarantee the correct calculation of am-

plitude and phase of unsteady pressures. In order to verify the time accuracy

of the present code, unsteady flows over various wings undergoing prescribed

oscillatory and ramp motions have been computed.

F-5 Wing

The first test case shown here is an unsteady viscous flow over the F-5 wing

which has an aspect ratio of 2.98, a taper ratio of 0.31 and a leading edge

sweep angle of 31.92 °. The test case is chosen at M_ = 0.9, Re = 9 x l0 s



and the angleof attack of 0°. Since the airfoil section is supercritical, the

flow is shock-free on the most of the wing surface at this flow condition. In

the unsteady case, the wing is pitching with a pitch amplitude of 0.11 ° at

a reduced frequency of 0.55 as illustrated in Fig. 1. The experimental data

show that the shock wave appears on the wing surface due to the pitching

motion. Figure 2 shows the comparison of the computed instantaneous pres-

sure coefficient contours using the upwind and central-difference methods

at a = 0° during pitch down motion. The upwind result shows the shock

wave moving forward, which is captured within the two grid points here.

In contrast, the central-difference result does not show any concentration of

contours throughout the cycle. The result confirms that the upwind method

predicts the shock motion more accurately than the central-difference method

does.

Clipped Delta Wing

The second test considers the motion of the leading-edge vortex as well as

the motion of the shock wave. Figure 3 illustrate the planform of a clipped

delta wing and a typical flow field to be computed. Since the leading edge

is sharp and swept, a leading-edge vortex is formed at moderate angles of

attack. A shock wave is also formed at transonic speeds. They interact with

each other at certain flow conditions.

Figure 4 shows the comparisons of unsteady pressures between the com-

puted and measured data at Moo = 0.9, Re = 18 × 10°, the mean angle of

attack of 4 ° , the pitch amplitude of 0.5 ° and the reduced frequency of 0.6.

Two peaks in the C'p magnitude and the corresponding jumps in the phase

angle are observed. The first peak near the leading edge is due to the mo-

tion of the leading-edge vortex and the second peak is due to the motion

of the shock wave. The results indicate that the computation captures the

main structure of the flow field with the modified Baldwin-Lomax turbulence

model.

To check the aeroelastic option of the code, the flexibility of the wing is

next considered. Figure 5 shows the first four mode shapes of the clipped

delta wing. Figure 6 shows the pressure responses on the wing upper surface

in the 10 ° ramp motion from 0 angle of attack at Moo = 0.9. At first, the

leading-edge vortex and shock wave develop. At the inboard section, they

remain without an interaction. At the outer sections, they have a strong



interaction, which leadsto a vortex breakdown. Figure 7 showsstream line
patterns before and after the breakdown. At 1500time steps(t = 0.1 see),

the angle of attack reaches 10 ° and the wing is deformed in the nearly maxi-

mum displacement. Then, the breakdown proceeds from the wing tip to the

middle of the wing span. At 2400 time steps (t = 0.16 see), the wing is less

deformed because of the reduction of the local lift due to the breakdown.

The results successfully demonstrate the capability of the upwind version of

ENSAERO.

For the aeroelastic case, the upwind computation requires 19 #sec per grid

point per time step at a speed of 160MFLOPS on a CRAY-YMP computer

using a single processor, while the central-difference computation requires 17

#sec at a speed of 150 MFLOPS.

Concluding Remarks

In the present study, a streamwise upwind algorithm has been extended and

validated for solving the unsteady three-dimensional Navier-Stokes equa-

tions. The resulting algorithm has been implemented into Ames's aeroe-

lasticity code, ENSAERO. The upwind version leads to higher accuracy in

both steady and unsteady computations than the previously used central-

difference method does, while the increase in the computational time is small.

The future research plan is to continue the algorithm enhancements of

ENSAERO and to apply the code to complicated geometries, such as a wing-

body combination and a wing with a control surface. ENSAERO inherits the

zonal grid capability developed for the Transonic Navier-Stokes code to han-

dle comphcated geometries, such as wing-body and complete aircraft config-

urations. The key development of the algorithm is integration of the upwind

and zonal techniques. This includes an interface treatment between moving

zones for a control surface. The other key development is an improvement

in turbulence modelling. So far the Baldwin-Lomax model has been used.

Applicability of more accurate models to unsteady transonic flows is to be

investigated.
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Fig. 1 Unsteady modal motion of F-5 wing.



F-5 wing
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Fig. 2 Comparison of computed instantaneous pressure contours between

the upwind and central-difference methods, a) Upwind result, b) Central-
difference result.



Circular-arc airfoil

t/c = 0.06

L.E. sweep angle = 50.4 °

Area = 1635.88 in 2
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Fig. 3 Planform geometry of clipped delta wing and typical flow structure.
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modified Baldwin-Lomax turbulence models with experiment, Moo = 0.90,

a,. = 3.97, _ = 0.46, Rec = 17.6 x 10e, k= 0.5919.
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Clipped Delta Wing (Flexible), M = 0.9, Re = 15 × 106, A = 0.04
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Fig. 6 Unsteady upper surface pressure responses of flexible wing, Moo = 0.90,
10 ° ramping up, Rec = 15.0 x l0 s, A= 0.04.
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Fig. ? Streamline pattern over the upper surface of flexible wing, Moo = 0.90,

10 ° ramping up, Rec = 15.0 x 106, A= 0.04. a) 1500 time steps; b) 2400 time

steps.
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asfollows:

(i)

A

where _y, (y, and soon, are the two-dimensionalmetrics

on the conicalsurface(Y,Z).

Numerical Algorithm

The vector of conserved quantities Q and the inviscid flux

vector F are

Ip,,# +n,p]
= I |p O +n,pI

J |pw_ + rhp|
L :h_ ]

where h is the total enthalpy and the contravariant velocity

component, U, is defined as _r = rt=u + r/yv + r/=w. For the

and ( directions, E" and (_ can be defined similarly. The

viscous flux vector G* is given by

0 ]_mlu¢ + Ira2(=
jtmlv¢ + _m2G
/amlw¢ +]m:(=

.,-,,,,',,s+ _(G" + ¢." + G')

FVS and FDS Algorithm

The space-discretized form of Exl. (3) can be written as

- +
An A(

AI_ A¢

+ 1 Gi+|-Gt- t
Re A(

(s)

where a second-order central-difference evaluation is applied
to the viscous term. Now the streamwise upwind algorithm
is described for the inviscid fluxes at cell interfaces.

For subsonic flows, Goorjima's FVS algorithm ( can be
written as

:'O'F
= 1_IV,Tl_F, + F_- } (6)

F(QhQ,,$,+½) 2 J" , --_-dQ

with

m,=<;+ +<;
mr = (=u_ + ()v_ + (=we

ms=l(u:+v _+w2)¢+
z

where Re is the Reynolds number, Pr is the Prandtl num-
ber, c is the speed of sound, and J is the transformation
Jacobian. Pressure is related to the conservative flow vari-
ables, t_, through the cquation of state for a perfect gas:

P I)2
P = (3' - I){ e - _(u= + + w:) } (2)

where p is the fluid density and e is total energy per unit of
volume of the fluid.

Assuming conical symmetry, Eq. (1) can be rewritten as

o,O + a_# + oc8 = -2# + _o<& (3)

where _ is the conical direction and (r/, () are the generalized
coordinates on the conical surface. The conical transforma-
tion can be described as9 _ = zg, r/ = rI(Y,Z), ( = ((Y,Z)

where A = (1+ y2 + 2=)], y = V/z, Z = z/z. The metrics
are expressed as

1 }" Z
&=_, G=h -, &=_-

,7== -_,(rfir + Z_z), ,7, = ;_v, o: = _fiz (4)

J = A_Y

where Ql and Q, are left and right states, respectively, and
the metric terms, r/,,% and r/=, are normalized by IVr/I as

k= = 1_, and so on. The contravariant velocity is also

normalized by tVr/h and used as U = k=u + kvu + k,w in the
following. For the first-order-accurate computations, I = j
and r = j + 1. For higher-order extensions, the MUSCL
approach s'! is used.

The integral part was derived as follows for U _> 0:

" O'F, -_-dQ={F+A'F},-{ F+A'F}, (?)

where * indicates local sonic values ( and A'F = F" - F.

Using the local isentropic relations, A'F can be simpli-
fied in the one-dimensional case: A'F = A'(pu)e°, where
e° = (1,u,h) T is a sum of two eigenvectors of A'F/A'Q.
Note A'(pu) > 0 for M < 1 and A'(pu) = 0 for M = 1.
This formula is equivalent to the FDS formula, if the flow
is isentropic. If not, it is an FVS algorithm. Even in the
latter case, the use of isentropic relations does not restrict
the flow fields because the isentropic relation is used only
locally at each grid point (or cell) to compute local sonic
_ues in space and time. This formula can be directly ex-
tended to the three-dimensional case because of the rotated

differencing along the streamwise direction:

A'F=A'(pq)e, (8)

with

(q')_ = 7--_(c; + -_--_q _ )

/(_.)__x_
_" = _t,--g-)"-'



f±t,,= (:u)t,,{t= sign(Ut,,)cos2O+,,}

4- st.,.A'(pq)t,,.cos_0/,,+ Pt,,lU_Isin20 - _I sin_0

Pt_,= pl,,{1-I-sign(Ul.,)cos201,,}- A2sin_0

and where A, = (c,,,- IU,,_l)_ac-_.and A_ = (c,_-

fU,_I) "2e-_. The evaluation of f+:,, requires many opera-

tions, but this is not excessively expensive in computations

because it is a scalar quantity.

CD Method

To compare with the upwind formulations, the second-
order-accurate CD method with the artificial dissipation

terms s is shown here as

QJ+ ,s+++) = si) +

v _2Q_+1 _ _2Q_ /
- {°5++(0;+, - O,) - + a, (17)

where _ = 0.05 in the present study, 62 is a central second-

difference, o is a spectral radius of the Jacobian matrix, A,

and ( )j+ } = (()j+l + ( )j}12. The parameter a controls

the strength of the second-order dissipation:

o,
= 4 / xpj+l + 2pj + Pj-I

08)

Note that this model uses the difference of the conservative

variables directly, while the present upwind formula uses the
combination of differences, such as total mass flux, pressure,

and contravariant velocity.

Results

Assuming conical flow, the computations become two-
dimensional. Computations for conical flows are carried out

in the following manner. The LU-ADI method, 12 which can
be modified for the conical flow fields,* is used for three

upwind algorithms and the CD method, which are computed

explicitly. Laminar flow is also assumed. The third-order
MUSCL scheme with Koren's differentiable limiter s is used

for the two-dimensional computations.

10 ° Cone at Zero Incidence

The first test case is the computation of flow past a 10 °

cone at zero incidence.: For a circular cone at zero incidence,

the solutions become one-dimensional, varying only with the

angle between conical ray and cone surface.

Figure 1 shows a comparison of numerical solutions on
37 grid points. The numerical fluxes are evaluated by three
first-order-accurate upwind algorithms, i.e., the present for-

mula (indicated as Goorjian-Obayashi), Roe's FDS and

Steger-Warming's FVS formulas, and the CD method. The
results indicate that the present formula resolves shocks and

shear layers accurately in the manner of Roe's formula which

has a perfect resolution in the one-dimensional case. The

CD method works fairly wall for capturing the boundary

layer. Steger-Warming's solution appears most dissipative,
as pointed out in Ref. 2.

75" Delta Wing

The second test case considers a vortical flow field in or-

der to examine the present formula's capability for comput-

ing shear flows. Computations are done for flows past a

75" delta wing at M_ = 2.8 and a = 16 ° , for which ex-

perimental data are available) s Figure 2 shows the model

geometry, and the typical experimental flow field is shown
in Fig. 3. For the computations, the conical assumption

is used: 4 Three grids axe used for a grid-refinement study.
The coarse, medium, and fine grids use 27 (circumferential)

x 51 (normal to body), 51 x 51 and 99 x 51 points, respec-
tively, as shown in Fig. 4, where (y, z) corresponds to the

physical coordinates, not to the conical coordinates (Y, Z).

The vertical solid lines near y = 0.1 and 0.2 in Fig. 4 in-

dicate the locations of the following comparisons in Figs. 7
and 8.

Computations were done with the present method, Roe's,

and the CD methods. Figure 5 shows a comparison of den-
sity contour plots of three numerical solutions on the fine

grids. Two shock waves can be observed. One is the bow
shock wave in the windward side of the delta wing, and the
other is the crossflow shock wave in the leeward side. The

present and Roe's methods give similar contour plots for
those shock waves, but the CD method gives smeared plots.

(For the CD method, the smoothing coemcient, ,_, was set
to 0.1 in the fine-grid case instead of n = 0.05 in the other
cases because at convergence the solution had numerical os-
cillations with n = 0.05 in the fine grid.) The low density

regions at both the primary and secondary vortices also in-

dicate that both upwind methods give similar solutions, but

the CD method gives a smeared one.

A comparison of total pressure contour plots on the fine
grids is shown in Fig. 6. The primary vortex appears simi-
larly in both upwind solutions, in respect to its location and

the contour level, but not in the CD solution. The primary

vortex appears off from the boundary layer in both upwind
solutions. But the primary vortex and the boundary layer
touch each other in the CD solution. The shear-flow region

separated from the leading edge also shows differences in

the three solutions. The present formula gives a sharper
solution than Roe's in this shear-flow region. The CD solu-

tion gives the most dissipative solution, again. To confirm

these observations, solution profiles are compared at y = 0.1

(approximately on the primary vortex) and y = 0.2 (approx-

imately on the secondary vortex) as indicated in Fig. 4.

Figure ? shows comparisons of total pressure profiles at

y = 0.1 on the coarse, medium, and fine grids. The large

gradient near z = 0 corresponds to the boundary layer. In

the coarse grid case, the CD solution does not have a high

peak as the other upwind solutions does. This peak becomes

higher and thus closer to the upwind solutions as the grids
are refined. The local minimum near z = 0.05 corresponds

to the primary vortex. The CD method also gives a smeared

profile. In Fig. 7c, the profile of the CD solution varies con-
tinuously to the primary vortex. Compared with the CD
solution, both upwind solutions have a sharper gradient re-

gion, which confirms the observation in Fig. 6. Roe's solu-
tions agree with the present solutions on the medium and
fine grids but not on the coarse grid. Although not shown in

this paper, plots of helicity density show that Roe's solution
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EXTENSION OF A STREAMWISE UPWIND ALGORITHM

TO A MOVING GRID SYSTEM

Shigeru Obayashi,* Peter M. Goorjian, and Guru P. Guruswamy

Ames Research Center

SUMMARY

A new streamwise upwind algorithm has been derived to compute unsteady flow fields with the use

of a moving-grid system. The temporally nonconservative LU-ADI (lower-upper-factored, alternating-

direction-implicit) method has been applied for time-marching computations. A comparison of the tempo-

rally nonconservative method with a time-conservative implicit upwind method indicates that the solutions

are insensitive to the conservative properties of the implicit solvers when practical time-steps are used. Us-

ing this new method, computations have been made for an oscillating wing at a transonic Mach number.

The computed results confirm that the present upwind scheme captures the shock motion better than the

central-difference scheme based on the Beam-Warming algorithm. The new upwind option of the code

allows larger time-steps and thus is more efficient, even though it requires slightly more computational

time per time-step than the central-difference option.

INTRODUCTION

A code, ENSAERO, is being developed at Ames using the Euler/Navier-Stokes equations for com-

puting the unsteady aerodynamics and aeroelasticity of aircraft. The capability of the code has been demon-

strated by computing vortical and transonic flows over flexible swept wings (refs. 1 and 2). The flow fields

were calculated by a time-accurate, finite-difference scheme based on central differencing.

The purpose of this study is to enhance the algorithm capability of the present code. In this re-

spect, the use of a new upwind scheme in comparison to the current central-difference (CD) scheme is

investigated. The CD scheme requires an artificial dissipation to stabilize computations. Such artificial-

dissipation models lead to more dissipative solutions than upwind schemes. In addition, the CD scheme

is sensitive to the amount of dissipation and needs a specific dissipation coefficient for each case. On the

other hand, upwind schemes do not require that any coefficient be specified.

Recently, a streamwise upwind algorithm has been developed and applied to treat steady-state prob-

lems of transonic flows over wings (ref. 3) and vortical flows over a delta wing (ref. 4) on fixed grids. The

main feature of the streamwise method is the use of the local stream direction, flow velocity, and pressure

gradient. The switching of flux evaluations always takes place at sonic values, where shock waves may ex-

ist. Therefore, this method follows the flow physics more closely than conventional upwind methods based

* MCAT Institute, San Jose, California.



TheCartesianvelocitycomponentsu, v, and w are nondimensionalized by the free-stream speed of sound

coo; the density p is nondimensionalized by the free-stream density poo; and the total energy per unit volume

e is nondimensionalized by 2poocoo. The viscous flux vector G _ is given by

[ o ]1 _m, u¢ + 3_m2G

_m,w¢ + _m2G
Itml m3 + a3m2 ( ffxu + ffvv + _w)

with

m2 = _=u¢ + _v¢ + Gw¢

m3 = l ( u2 + v2 +w2)¢+
z

1 (c2 )¢
Pr ('1 - 1)

where Re is the Reynolds number, Pr is the Prandtl number, c is the speed of sound, and J is the trans-

formation Jacobian. Pressure is related to the conservative flow variables Q, through the equation of state

for a perfect gas:

p=(ff_l) [e_2(u2 +v2 +w2) ] (2)

where p is the fluid density and e is total energy per unit of volume of the fluid.

For the inviscid case, the viscous flux G" is replaced by 0. For the viscous case, the viscosity

coefficient/z in G" is computed as the sum of/zt + #t where the laminar viscosity/_t is taken from the

free-stream laminar viscosity, assumed to be constant for transonic flows, and the turbulent viscosity #t is

evaluated by the Baldwin-Lomax model. 5

NUMERICAL ALGORITHM

The space-discretized form of equation (1) can be written as

.. - Fj+ - _ -
(3)

where a second-order central-difference evaluation is applied to the viscous term.

The evaluation of the inviscid fluxes is based on the finite-volume cell-centered scheme. To be

consistent with the finite-difference scheme in ENSAERO, the metrics are defined at each grid point where

the flow variables are stored. The surface vector of cell-interface, which is necessary for the finite-volume

formulation, can be obtained by averaging the metrics at the adjoining points. The free-stream preservation

of this metric evaluation was shown in reference 6.



Equation(4) is writtenin avectorform. If theformulais rewrittenin componentform, thepresent
algorithmcanbesummarizedwith asurfacevectorS anda motionof its centroid,xt = (xt, yt, zt), as

.- 1 IV l{ ÷ } (5)
F(Qt,Qr,Sj+_,xtj+_) - 2 J

where

fe +l,r ul,r + kz Pl,r

f+ + ku p+l,r 1)l, r l,r

f+ +l,r Wl, r + kz Pl,r

gt,_ - kt Pt,_ + (IV"_IAP - V'_Az) sin2 0

fi,_ = (PV)I,_ [1 -t- sign(_,_) cose0t,_]

+ st,_ A*(p_)t,_ cos20l,_ -4- pl,,.IVmlsin20 - 1 A1 sin 20

1

P+t,_= P'._ [1 + sign(_,r) cos20t,_] - _-A2sin20

where _ and V" are defined above, and where A1 = (c_ - I%,1) Az = (c,,, - I%,l)pmA V, and

kt = -k=xt - kvyt - kzzt. The averaged state (m) is defined for p, u, v, w, and H by the arithmetic

average of the left (1) and right (r) states.

The switches sl and s_ am defined in the manner of Godunov's method as follows. For V" >_ 0,

at = 1 - q em (6)
s_ = (1 - c,_)(1 - e_)

where

1 [l+sign(M 2
el,m, r= $ l.m, r-l)]

and M= _/c.

A simple way to evaluate the rotation angle is to use cos0 = _,'/_. In supersonic flow fields,

however, it is important to detect whether the velocity projected to the grid line is beyond the Mach cone.

Thus, _r/_ is replaced by M • _r/O = V/c. If V/c becomes larger than one, cos0 is set to one. To avoid

expansion shocks, the rotation angle is determined by a mixture of averaged (m) and pointwise (l, r) values:

- 2 _2
Vm rh v l'r

cos 20l,_ = min[ ( 1 - ¢) c-_-m+ _" _2 , 1 ]
c/,r

(7)



Approximate Block ADI Method

The LU-ADI method described in the previous section is nonconservative in time owing to the

diagonalization. To investigate the significance of this temporal nonconservativeness, an alternative ap-

proach is considered here. A time-conservative method can be constructed using a block-tridiagonal solver

similar to the Beam-Warming method. Since true Jacobians of the numerical fluxes of the present upwind

algorithm are expensive to compute, approximate Jacobians are used here.

To construct an implicit method for the present upwind algorithm, it is easier to start from the vector

form (eq. (4)) rather than from the component form (eq. (5)). From equation (4), the first-order-accurate
flux can be rewritten as

if?=2 Ji±--'--_ { Fi [1 +sign(_.)cos2Oj] 4- sjA*(p?l)jcos2Ojesj

i_.+l.lsin2O QJ + c/±_. -I_-±_1 (13)
_c,z±_: sin 2 o e,j± _:pj

+

-t- pj±_(cj±½ - 1_._. [) sin2O eaja:_, vj }

To simplify the formula further, the esj±_ term in the second line of the above formula is replaced by esj.

Then, the Jacobian 0ff±/0_) can be approximated as

- 2 JJ±--'-_r_ Bj[1 + sign(_.)cos20j]

+ [8.A,(p_)jcos28 / + c/±_. -]Vj±_lp.sinZ8 ] Mj (14)
C2

+/_.±_lsinZ0 1 4- pj±_ ( c/±_ -I%.±_[)sinZONj±_)
Pj

where B = OF/OQ, I is the identity matrix,

M I

10pe_ 1

p oO p 1 0 0 0 i/

0 1 0 0

0 0 1 0

0 0 0 1

2-_L(u2+v 2+w 2) -('7-1)u -('7- 1)v -(7- 1)w q'/

(ooooo)0 k_ k=k_ k=kz 0

N = ed. (O,k=,ku,kz,O) = 0 k vk= k_ k_kz 0

0 kzkx kzky k_ 0

0 Vfk= VYk u VYkz 0



noticedin theunsteadyresults.Theconvergenceof theunsteadycomputationsto aperiodicflow isverified
bycomparingtheresultsbetweencycles.For all casesconsideredhere,theresultsfor thethirdcyclegive
pressureprofiles that areidenticalto thoseof thesecond-cycleresults.Thus, thenumericaltransientis
confirmedto disappearwithin twocycles.

Thepresentupwindresultsarealsocomparedwith theresultsobtainedby usingtheexistingCD
method.Reference13discussestheCD resultsobtainedfrom the sametestcase.The CD methoduses
thediagonalinversionsof theBeam-Warmingmethod(ref. 9), andthusit is first-orderaccuratebut non-
conservativein time. Its artificialdissipationmodelconsistsof second-andfourth-orderdissipationterms
controlledby theamountof thesecond-differenceof pressure.

Inviscid Solutions

First, the inviscid coarse-grid (91 x 25 x 25 points) solutions are presented. Figure 1 compares the

computed and measured unsteady, upper-surface pressure coefficients for the real and imaginary parts of

the first Fourier component. Pressure coefficients are shown for various span locations. The computations

were done by using the upwind algorithm with the LU-ADI method (UP-LU). The solid, dashed, and dotted

lines in the figure indicate the results obtained using 1440, 720, and 360 time-steps per cycle of oscillation

(steps/cycle), respectively. (The time-steps per cycle rate of 1440 corresponds to A t __ 0.02 .) The solution

profiles obtained using 1800 steps/cycle coincided with those using 1440 steps/cycle. Thus, the unsteady

pressure profiles converged with respect to time-step sizes at 1440 steps/cycle. In addition, because the

differences between the results with 720 and 1440 steps/cycle are not critical when making comparisons

with experimental data, the computation with 720 steps/cycle is acceptable for numerical efficiency.

Figure 2 shows the analogous CD results. In this case, the second- and fourth-order dissipation

coefficients are fixed at 0.25 and 0.01, respectively (denoted as CD(0.01)). These coefficients are the

values that were used in references 1, 2, 9 and 13. The CD results show less dependence on time-step

size than do the UP-LU results, although the profiles are smeared out at the large-gradient region near the

shock wave and leading-edge regions. In order to check the dependence of the CD method on the amount

of numerical dissipation, computations were tried with half the amount of dissipation coefficients (0.125,

0.005). At 360 steps/cycle, the computation became unstable with these coefficients. At 720 and 1440

steps/cycle, the computations were stable, but the resulting unsteady pressure profiles were still smeared

OUt.

Figure 3 shows the results using the approximate block ADI method applied to the present upwind

algorithm (UP-BL). The UP-BL method was not stable for computations using 360 and 720 steps/cycle, and

thus the computations were done using 1080, 2160, and 3600 steps/cycle. The solution profiles obtained

with 3600 steps/cycle finally showed good agreement with the UP-LU result converged at 1440 steps/cycle.

Figure 4 compares the three methods, UP-LU, UP-BL, and CD(0.01), fixing the number of time-

steps per cycle at 1440. Both UP-LU and UP-BL results give similar profiles at the shock motion, although

the UP-LU method is nonconservative in time. Both upwind methods give better agreement with the

experimental data in the region of the shock motion than the CD method.

9



shownby oscillationsin thepressureprofilesof CD(0.01).However,theUP-LU resultshowsthattheUP-
LU methodrelaxesthisstabilityrequirement.Thus,time-stepsizesfor theUP-LU methodarenot limited
by stabilityconsiderationsevenfor theviscouscase.

Figure7 showsthecorrespondingresultswith 1440steps/cycle.This is thetime-stepratesug-
gestedin reference13. Here,theCD(0.01)solutionbecomesstableandagreesreasonablywell with the
experimentaldata.To checkwhethertheamountof dissipationis reasonable,thedissipationcoefficients
werereducedby half, aswasdonefor the inviscidcase,but theCD(0.005)computationdivergedfor the
viscouscase.In figure7,andanalogousto theinviscidresultsshownin figure5, theCD solutionsapproach
theUP-LU solutionasthedissipationcoefficientsarereduced.Again the UP-LU method is confirmed to

give a less-dissipative and thus more accurate solution than the CD method. The viscous solutions in fig-

ure 7 are similar to the inviscid solutions in shown in figure 5 because the experimental flow field does not

contain strong viscous effect (ref. 12).

These results also indicate that the CD method is sensitive to both time-step size and to the amount

of artificial dissipation added. Therefore, users of the CD method are required to find an adequate combina-

tion of time-step size and dissipation coefficients on a case-by-case basis. In contrast, the UP-LU method

is robust, and users do not have to find any dissipation coefficient.

For the viscous case, the UP-LU computation requires 18.9 #sec per grid point per time step at

a speed of 141 MFLOPS on a CRAY-YMP computer using a single processor, and the CD computation

requires 17.1 # sec at a speed of 132 MFLOPS. There is 11% increase of CPU time when the upwind option
of the code is used.

CONCLUSIONS

A new streamwise upwind algorithm has been derived to compute unsteady flow fields with a

moving grid system. The temporally nonconservative lower-upper-factored, alternating-direction-implicit

(LU-ADI) method has been applied to compute flow over an oscillating wing at a transonic Mach number.

A comparison of the temporally nonconservative method with a time-conservative version of the upwind

scheme indicates that the solutions are insensitive to the time-conservativeness of the implicit solvers when

practical time-step sizes are used. The temporally nonconservative upwind method was found to be more

stable and twice as efficient as the time-conservative block ADI scheme, even though the block ADI scheme

employed an approximate form of the Jacobians. Comparisons have been made between results obtained

with both upwind schemes, with experimental measurements, and with computed results obtained using

the existing central-difference method.

Comparisons with experimental data show that the upwind algorithm predicts the shock motion

better than the central-difference (CD) method. The CD solutions are also found to be sensitive to the

amount of numerical dissipation, and as a result, the dissipation coeffÉcients must be specified case by case.

In comparison, the present upwind method does not require a dissipation coefficient. Thus, the method that

combines the streamwise upwind and LU-ADI methods is proposed for practical computations. This new

upwind method is incorporated in the aeroelastic code ENSAERO. The new upwind option of the code

allows larger time-steps and thus is more efficient, even though it requires slightly more computational

time per time-step than the CD option.

11
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Application of a Streamwise Upwind Algorithm for Unsteady
Transonic Computations over Oscillating Wings

Shigeru Obayashi,* Guru P. Gumswamy,** and Peter M. Goorjian**
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Abstract

A new streamwise upwind algorithm has been derived

to compute unsteady flows with a moving grid system and

applied to compute flows over oscillating wings at tran-
sonic Mach numbers. Comparisons have been made be-

tween results obtained from this upwind algorithm, using

both temporally nonconservative- and conservative-implicit

methods, with the results obtained from a central-difference

method, and also with experimental data. The results show

(1) the efficiency and practicality of the temporally noncon-

servative implicit solver and (2) the robustness and accuracy

of the upwind method for unsteady computations compared
to the central-difference method.

Introduction

In the last two decades, there have been extensive de-

velopments in computational aerodynamics, which consti-

tutes a major part of the general area of computational fluid

dynamics. Such developments are essential to advance the

understanding of the physics of complex flows, to comple-

ment expensive wind-tunnel tests, and to reduce the overall

design cost of an aircraft, particularly in the area of aeroe-

lasticity.

Aeroelasticity plays an important role in the design and

development of aircraft, particularly modern aircraft, which
tend to be more flexible. Several phenomena that can be

dangerous and limit the performance of an aircraft occur be-
cause of the interaction of the flow with flexible components.

For example, an aircraft with highly swept wings may ex-
perience vortex-induced aeroelastic oscillations, t Also, un-

desirable aeroelastic phenomena due to the presence and

movement of shock waves occur in the transonic range.

Aeroelastically critical phenomena, such as a low transonic

*Research Scientist, MCAT Institute, member AIAA

**Research Scientist, AIAA Associate Fellow

Copyright © 1990 by the American Institute of Aeronautics

and Astronautics, Inc. No copyright is asserted in the United
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flutter speed, have been known to occur through limited

wind-tunnel tests and flight tests.

Acax)elastic tests require extensive cost and risk. An

aernelastic wind-tunnel experiment is an order of magnitude

more expensive than a parallel experiment involving only
aerodynamics. By complementing the wind-tunnel exper-
iments with numerical simulations, the overall cost of the

development of aircraft can be considerably reduced. In or-

der to accurately compute aeroelastic phenomenon it is nec-

essary to solve the unsteady Euler/Navier-Stokes equations
simultaneously with the structural equations of motion.

At Ames a code, ENSAERO, is being developed for

computing the unsteady aerodynamics and aeroelasticity of
aircraft and it solves the Euler/Navier-Stokes equations. The

capability of the code has been demonstrated by computing
vortical and transonic flows over flexible swept wings. 2'3

The flow fields were calculated by a time-accurate, finite-
difference scheme based on central differencing.

The motivation of this study is to enhance the algorithm

capability of the present code. Toward this goal, the use of

a new upwind scheme in comparison to the current central-

difference (CD) scheme is investigated in this paper. The

CD scheme requires artificial dissipation to stabilize com-

putations. In general, such artificial dissipation models lead

to more dissipative, and thus less accurate, solutions than
upwind schemes. In addition, the CD scheme is sensitive

to the amount of dissipation and it is necessary to specify a

dissipation coefficient on a case by case basis. On the other
hand, upwind schemes do not require any coefficient to be

specified.

Among upwind algorithms, a streamwise upwind al-

gorithm has recently been developed and applied to steady-
state problems of transonic flows over wings 4 and vortical

flows over a delta wing s on fixed grids. Most multidimen-

sional upwind algorithms are first constructed in one dimen-
sion and then extended to multidimensions by applying the

one-dimensional procedure in each coordinate direction. By

comparison, the present method uses the local stream direc-

tion, flow velocity, and wessure gradient to construct the

upwinding. The switching of flux evaluations always takes
place at sonic values, where transonic shock waves may be

located. Therefore, this method follows the flow physics

more closely than the coordinate upwind methods. The com-

puted results confmned the higher resolution of the present
algorithm over the CD method as well as over other upwind
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For a moving system,

= _7=(u - zt) + %(v - _t) + _l,(w - z4)

= V_.q

where _ = -_=xt - %Pt - q, zt. Then the formulas for a
fixed system can be rewritten for a moving system. Note that

the present algorithm uses xt, Vt, and zt to obtain the flow

velocity for upwinding in the streamwise direction, instead
of _t, _, and _t to compute the contravariant velocity for

upwinding in the coordinate direction.

The present algorithm can be summarized with a sur-
face vector S = _ and a motion of its centroid, xt =
(zt, v,, z0, as

1 ktQoo)o., F;+
(4)

where

_1,, u_,, + kz p:l:

F* f* p+l,r = l,, t/l,, + kit I,,

_Lr WI,, + ks p+

y,* H,,. /_ p+,,. - z,.+ (l';'.,Iav- g'..a2)sin2e

f+ = (p_')t.,{1 4-sign(_,) cos20l.,}
[,_r

4- sl,. A*(M)l,. cos20t,. 4-m,. Ir¢',,,Isin20

_ IAt sin2 0

vl._, = v_.,{1 4- sign(_.,) cos20_.,}- 2A2sin20

_,=,. = k_(m,=,. - z,) + ky(v_,.,,. - V,)

+ ks(Wl)m,, -- Zt)

where_2 = (u-zO2+(v-v,)2+(w-z_) 2 anda*(_) =
p*_* - p_ with local sonic values,

and where

2 (a 2 + 2T.12 )(],)2 = ff_ 1

Ap
A,=(_., _ lV,,,l),_--_-=

A2 =(,,.- I_',,,I)p,,,AV

with A • = "r - "i, V = k,u + k_v + k,w, kt = -k, xt -

kitta - k.z_, k. = n./lVnl, and so on. The subscrilm 1,m
and r denote the left, averaged and right state of the flow

variables. The averaged state is defined for 0, u, v, w, and

H by the arithmetic average of the left and right states. The

basic scheme is first-order accurate with / = jandr = j+ 1.

The term,/_Qoo, subtracts the fre_strmun for time-me.tics.

The switches si and s, are defined in the manner of Go-
dunov's method as follows. For _r >_ O,

sl = 1 -- _I E,,,
(5)

s.=(_ - _,,,)({ -_,)

where

_'"" = 2 { 1 + sign (
M 2*,m,, - 1)}

and M"= _/a.
A simple way to evaluate the rotation angle is to use

cos0 = f//_. In supersonic flow fields, however, it is im-

portant to detect whether the velocity projected to the grid
line is beyond the Mach cone. Thus, V]_ is replaced by

M . V/_ = V/a. If Via becomes larger than one, cos0 is

set to one. To avoid expansion shocks, 5 the rotation angle

is determined by a mixture of averaged (m) and pointwise

(l, r) values:

_2
cos20,,. = mint ( ] - _) ,_=2+ __--_, _ ! _6)

02 01, ,

The following relation is used for evaluating _, _ [0, !] in

this paper because of the smoothness:

_= max[ 1-- -- l+(,_+ 1) , 0 ] (7)

wherept and lO2denote upstream and downsl_eam pressures,

respectively. The sine is determined by an arithmetic aver-

age of the cosines: sin20 = 1 - _(COS20t + COS20r).

Higher-order schemes are constructed from a one-

parameter family, _, of interpolations of the primitive vari-

ables, p, u, v, w, and p. For example,

Pt = {1+ _[(1-_)V+(I+_)AI}pi

pr={1-_-_[(l+_)V+(l-_)A]}p/+, (8)

where V and A are backward and forward difference op-

erators, respectively. _ For the third-order scheme, _ = _-,
Korea's differentiable limiter t° is used in this paper. The

limiter _ is calculated as

3VV/aVi + _ (9)
eY = 2(Apy - Vpy) 2 + 3VpyAp/+

where a smallconstante,_ = 10-s typically,isadded to

preventthedivisionby zero. Tlm same formulasare used

fortheotherprimitivevariables.

LU-ADI Method

The time marching method used for the present upwind

scheme is the LU-ADI factodzation method proposed by one

of the present authors. _ The LU-ADI method is a compro-

mise of ADI and LU fsctorization. This method applied to

Eq. (3) is written as

(T{ L ADAUAT_-' ) (T.L sD_U_T;' )

(Te L,cDcUcT"_') = AIR." (I0)
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Unsteady computations are started from the corre-

sponding steady-state solution. The convergence of the un-

steady computations to a periodic flow is verified by com-

paring theresultsbetween cycles.For allcasespresented

here, the third-cycle results give identical pressure profiles to

those of the second-cycle results. Thus the numerical Wan-
sient is confirmed to disappear within two cycles.

First, the LU-ADI upwind method was applied to corn-

putt this inviscid flow on the coarse (91 x 25 x 25 point)

grid using 360, 720, 1080, 1440, and 1800 time steps per

cycle of oscillation (steps/cycle). The unsteady pressure

profiles on the wing surface that wen) obtained using 1800

steps/cycle coincided with those using 1440 steps/cycle. The

computation converged with respect to time-sttp sizes at
1440 steps/cycle. Except for the result using 360 sttps/cycle,
differences between the other results were small. Thus, 720

steps/cycle is acceptable for practical computations.

The CD method showed less dependence on time-sttp

sizes than the LU-ADI upwind method. The CD computa-

tion converged at 720 steps/cycle. The block-ADl upwind
method showed more dependence on time-step size. The

solution profiles obtained with 3600 steps/cycle finally gave

a good agreement with the LU-ADI upwind result obtained

at 1440 steps/cycle. The block-ADI computations were not

stable for 360 and 720 steps/cycle.

Figure 1 shows the comparison of real and imaginary

parts of the first Fourier component between the computed
and measured unsteady upper-surface pressure cocfliciems

of the wing at various spanwise locations, using the three
methods with 1440 steps/cycle. Both upwind results give

similar profiles of the shock motion, although the LU-ADI

upwind method is nonconservative in time. Both upwind

results give crisper profiles (narrower peaks) at the region of
the shock motion than the CD result.

These results indicate that the ttmporally nonconserva-

tive LU-ADI method can be used for unsteady computations

even with moving shock waves when a large enough number

of time steps (/.e., small A t) is used per cycle. In the Wc_nt

case, any number greater than 720 will give practical results.
The CD method also uses the temporally nonconservative

diagonal form. However, the result differs from both up-
wind results. This indicates that the solution depends on the

numerical dissipation more than the time-conservative prop-
erties of the methods. The block-ADI method requires twice

as much CPU time as the LU-ADI method, but its accuracy

does not appear to compensate for the increased computa-
tional time. Thus, the block-ADI method will be dropped in

the following computations.

Next, the inviscid computations were repeated on a

fillet(151 X 25 X 34 poin0 grid to check thegriddepen-

dency.Figure 2 shows the comparison of unsteady pressures

using the LU-ADI upwind and CD meth_. Both compu-
tations use 720 steps/cycle, as suggested in the cmrse-grid

case. Compared with the _grid solution in Fig. I, the

CD solution tends to converge to the upwind solution due

to the grid refinement, although the profiles are still slightly

smeared at the peak. Therefore, the upwind method is con-

firmed to give a less dissipative and thus more accurate so-
lution than the CD method.

F-5 Wing

The second test considers unsteady viscous flows over

an F-5 wing which has an aspect ratio of 2.98, a taper ratio

of 0.31 and a leading edge sweep angle of 31.92 °. Com-

putations were made using two grids: the coarse and fine

grids containing 121 x 25 x 25 points and 151 x 25 x

30 points, respectively. Figure 3 shows the F-5 wing and
the grid distributions at the root section of the fine grid. Fig-
ure 4 illustrates the motion used in the experiment conducted

at the National Aerospace Laboratory of the Netherlands. t6

The wing is pitching about an axis located at the 50% root
chord, and the pitching axis is normal to the wing root.Ref-

mence 3 discusses the CD results applied to the same test

cas_.

The lest cases are chosen at Moo = 0.896 and 1.328

where the measured steady and unsteady data are given in

Ref. 16. All F-5 wing cases are computed at Re = 9 x 106
based on the root chord. At these flow conditions, the coarse-

grid solution gave y+ < 13.3 at the first shell of points above

the wing surface. For both the steady and unsteady cases, the

mean angle of attack cwmis 0". The unsteady flows are com-

puted at a reduced fi_quency k = 0.550 and a pitch ampli-
tude& = 0.11" for Moo = 0.896. Similarly, k= 0.396 and

b ffi 0.22" for Moo = 1.328. The Baldwin-Lomax eddy-

viscosity model is used to compute the turbulent viscosity
coefficient.

The time-sttp dependency of the upwind method was

checked on both the coarse and fine grids at Moo = 0.896.

The unsteady pressure profiles converged with respect to

time-sttp sizes at 1800 steps/cycle for the coarse grid and

2160 steps/cycle for the fine grid. For computational effi-

ciency, 1440 and 1800 steps/cycle are deemed acceptable
for the coarse and fine grids, respectively. All results shown

here were computed with 1800 steps/cycle.

M_ = 0.896

Figures 5 and 6 show the comparisons of the computed

steady and unsteady pressures with the experimental data at
Moo = 0.896 using file upwind and CD methods on the

coarse (121 x 25 x 25 point) grid. For the steady case,
both numerical solutions show shock-free profiles in agree-

merit with the measured data (note that C_p = -0.196 for

Moo ffi 0.896). l_r the oscillatory case, unsteady pressure

peaks of the upwind solution indicates that the unsteady mo-
tion of the wing produces a shock wave. The measured data

also show the peaks except at the 20% seanispan location. In

contrast, the unsteady pressure peaks of the CD solution are
smeared out and the resulting profiles agree less favorably

with the experiment except at the 20% semispan location.

The computation assumes symmetry at the wing mot instead
of a side wall which may affect the experimental data at the
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Free-Stream Capturing for Moving Coordinates

in Three Dimensions

Shigeru Obayashi*

NASA Ames Research Center, Moffett Field, California

Introduction

Body-conforming coordinates transformation of a fluid conservation-law form is

generally used in computational fluid dynamics. The metrics associated with the coordi-

nates transformation are required to satisfy certain geometric identities to maintain the free

stream. 1 These metrics are called free-stream capturing (or preserving) metrics. So far, nu-

merical techniques are known to capture the free-stream on stationary grids. 2-4 However,

the extension of the free-stream capturing metrics to moving grids is not straightforward.

The error introduced by the time metrics has been overlooked because it is negligible in

most cases, but it can be significant in certain applications such as helicopter rotor flow

fields. 5

Rigorous formulations to avoid this error were suggested in Ref. 1, and demon-

strated, for example, in Ref. 6. Based on the work in Ref. 1, the present study describes

detailed formulas for constructing the free-stream capturing metrics in space and time on

both the finite-volume (FV) and finite-difference (FD) framework. The error introduced

by the inconsistent time-metric term is also evaluated.

*Research Scientist, Applied Computational Fluids Branch, MCAT Institute, San

Jose, California 95127.



Using Eqs. (4) and (6), one obtains

sr × ndS = 0 (7)

The conservation of volume for a time-varying cell is given by

V(t2)- V(tl) = n. vcdS dt (8)
(t)

The free-stream preservation due to these geometric identities can be demonstrated by

substituting Qo_, Fst_ and Eqs. (2) to (4) to Eq. (1):

Q_[V(tz)-V(t,)]=- IF,tee.( ndS)-Qc_(Vo-ft×ro).( ndS)
1 (0)

-qo_f2. (_sr x ndS)-qo_(_sn'vcdS)]dt

The geometric identity, Eq. (5), suffices to capture the free stream in a fixed coordinate

system, where most of steady-state computations are carried out, and in a moving coor-

dinate system without rotation (f_ = 0). When the grid is moving with rotation (f/# 0),

the second geometric identity, Eq. (7), is to be satisfied. For the general motion of grid

with changing cell volume, the third geometric identity, Eq. (8), is also required.

The geometric identity, Eq. (5), preserves the free stream at any instance t when

v = 0. Thus, the time-differential form of Eq. (1) is often used in the FV formulation.

However, if the grid moves, the geometric identities have to be satisfied correctly in the

integral form.

Free-Stream Capturing in the Inertial Frame

To preserve the free-stream perfectly with a moving grid, Ref. 1 suggests to consider

the rigorous FV formulations in space and time. One of the rigorous FV formulations with

a grid velocity expressed in the inertial frame is shown here in detail.

Assuming that v is given and then by substituting Q_ and Fsto¢ to Eq. (1), one

obtains

Qoc[V(t2)- V(tl)] = -Fst_ • ndSdt + Q_ n. vdSdt (10)
1 1



where Sll,s,s and S122'1' are the surface vectors in space and time domain. Note that this

formula requires only the difference of the positions of grid points between tl and t2, not

the grid velocity v itself. Then, instead of Eqs. (6) and (8), one obtains

Av = (is)
cell

This identity does not mean to satisfy Eq. (7) but does satisfy Eq. (6) in the time-

integral form. Therefore, Eq. (18) leads to the perfect free-stream capturing with the

use of Eq. (11).

Free-Stream Capturing in the Non-Inertlal Frame

It is convenient to use the non-inertial frame for certain applications. Thus, the

FV formulation with a grid velocity expressed in the non-inertial frame is shown next.

The analysis also provides a deep insight for the free-stream capturing because it considers

three types of motion given in Eqs. (3) and (4) separately. The discretized forms of the

geometric identities in the FV method can be expressed as

 Sn=O (19)
cell

Sr × n = 0 (20)
cell

= (21)
cell

where Vsc is obtained from Eq. (16) by replacing v with Vc (see Ref. 1 for more details).

Reference 1 introduces the area moment M = fs r x ndS so as to satisfy the

discretized geometric identity, Eq. (7), on the hexahedron:

Mls62 = r16s x $16s + r126 x 8126 (22)

1
where r16s = _(rl + re + rs), $16s = ½(r6 - rl) x (rs - rl), and so on. Note that

Mls62 # r1562 x $1562. The expression, rls62 × S1562, is not well-defined for computing

area moment. In contrast, Eq. (22) is well-defined. To see these, let r<>, rA, S<> and Szx

be r1562, r165, ISlz62]n and IS16s]n, respectively. After simple algebraic manipulation, one



The other conceptually different way is to use Szx always; that is, to regard the

hexahedral cell as dodecahedronor to divide the hexahedral cell into tetrahedron. Then,

instead of Eq. (14), one will obtain

(2s)
cell

for either dodecahedron or tetrahedron in addition to Eq. (24). The resulting metric terms

will preserve the free stream. The use of the tetrahedral cell allows the most compact and

consistent metric formulation. Note, however, that the use of the tetrahedron results in

unstructured-grid formulations.

Finite-Difference Formulation

Geometric Identities in the Finite-Difference Formulation

The analysis of the FD method can be simplified with the aid of the above discussion

of the FV method. The FD formulation has to be derived from the integral form, Eq. (1).

Again from Ref. 1, the differential form for Eq. (1) can be written with a generalized

coordinate transformation,

r = r(_,rl, (, r), t=r (29)

as follows:

0,-+ + =o

where subscripts indicate partial differentiation,

Q, = QV, #= S _ . F, F= S e . F,

and where

(3O)

and

G=S(.F

7

V = r_ .r, x r( (32)

S { = re x rg, S e = r( x r_, S ¢ = r{ x re (31)



where/_denotesthe differenceoperator. After scalingby one-fourth to adjust the areafrom

double-sizedto regular cell, the first componentof the aboveexpressioncanbe written as

7 = - (38)

where /_ denotes the arithmetic averaging operator. Thus, Eq. (12) is equivalent to the

consistently differenced metrics in Ref. 3 that are based on the averaging procedure so as

to satisfy the differential chain rules numerically.

The main discrepancy between the FV and FD formulations appears in the defini-

tion of cell volume. The cell volume defined by Eq. (13) is different from the one defined

by the discretized form of Eq. (32) because the FD method does not use the cell concept.

Nevertheless, Eq. (13) can be applied to the FD method with a scaling factor of one-eighth

instead of Eq. (32). Then, the FV space metrics on the double-sized cell become identical

to the FD ones.

The FD time-metric evaluation is also considered from the FV point of view. It is

easily found that the time-metric evaluation, Eq. (34), will not maintain the free stream

even with the use of the free-stream capturing metrics, Eqs. (11) or (12), in case of a

rotating frame because of Eq. (23). Also, it can be shown that such inconsistent time

metrics do not satisfy GCL. The discretized form of GCL can be written as

AV = Ar[6_(S _- r,-) + _(S '7. rr) + _¢(S ¢" r,-)] (39)

Let the grid move in the rigid rotation, that is, V,- = 0 and r,- = f_ x r. Then the left-hand

side of Eq. (39) is zero. But the right-hand side results in 6e(r ×S_)+_5,_(rx S'_)+6¢(r x S¢) =_

0 (Eq. (23) appears again). This indicates that the use of the GCL condition, Eq. (39),

for computing AV can be erroneous. In other words, the GCL condition, Eq. (39), is

necessary to preserve the free stream, but not sufficient to construct consistent metrics in

space and time.

It is easily found that the time integration of Eq. (39) from tl to t_ results in

Eq. (18) and thus both equations are equivalent. Therefore, the consistent time metrics

9
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Unsteady Shock-Vortex Interaction on a Flexible Delta Wing

Shigeru Obayashi* and Guru P. Gurnswamy**

NASA Ames Research Center, 258-1

Moffett Field, California 94035

Abstract

Unsteady Navier-Stokes computations have been

carried out for simulating transonic flows over a clipped

delta wing undergoing oscillatory and ramp motions,

including flexibility. The implicit upwind algorithm has

been validated by comparing the solutions with exper-

imental data for the oscillatory pitching motion cases.

The numerical and experimental results agree well at

moderate angles of attack, where a leading-edge vortex

develops. The ramp motion cases have demonstrated
the effects of unsteadiness of the flow field and struc-

tural flexibility on the wing responses. For the 10°

ramp motion, a vortex breakdown is observed. The

interaction with the shock wave plays an essential role

in the process of the breakdown observed in the present
calculation.

Introduction

In the last decade, there have been extensive de-

velopments in computational fluid dynamics toward

the prediction of the three-dimensional flow field about

complex geometries at moderate and high angles of at-

tack. Among the characteristics of flows over aircraft,

the behavior of the flow over delta wings is of strong

interest for high-speed aircraft because of the nonlin-

ear lift increase due to the leading-edge vortex. Effects

*Research Scientist, MCAT Institute, member AIAA.

**Research Scientist, AIAA Associate Fellow.

Copyright _) 1991 by the American Institute of Aero-

nautics and Astronautics, Inc. No copyright is asserted

in the United States under Title 17, U.S. Code. The

U.S. Government has a royalty-free license to exercise

all rights under the copyright claimed herein for Gov-

ernmental purposes. All other rights are reserved by

the copyright owner.

of flexibility can further influence the nature of flows

on such wings. Steady-state flow problems associated

with delta wings have been widely investigated compu-

tationaUy (for example, Refs. 1 to 3). Several advanced

studies have also been performed for unsteady vortical

calculations at subsonic and supersonic Mach numbers.

For example, Ref. 4 presented a conical flow computa-

tion on a rigid wing and Ref. 5 presented a subsonic

three-dimensional computation on a flexible wing, both

involving vortical flows.

Numerical methods can play an important role in

complementing expensive wind tunnel tests, particu-

larly in the area of aeroelasticity. An aeroelastic wind

tunnel experiment is an order of magnitude more ex-

pensive than a similar rigid-body experiment involv-

ing only aerodynamics. By complementing the experi-

ments with numerical simulations, the overall cost of

the development of aircraft can be considerably re-

duced. Thus development of a numerical method is

desired for simulating aeroelastic phenomenon. To ac-

curately compute aeroelastic phenomenon it is neces-

sary to solve the unsteady Euler/Navier-Stokes equa-

tions simultaneously with the structural equations of
motion.

Recently a code, ENSAERO, was developed to

compute aeroelastic responses by simultaneously in-

tegrating the Euler/Navier-Stokes equations and the

modal structural equations of motion using aeroelasti-

cally adaptive dynamic grids. _'7 An upwind algorithm

was implemented into the code and the resulting code

was successfully applied to compute transonic flows

over a typical fighter-type wing undergoing oscillatory
motion, s

The purpose of this paper is to examine the ca-
pability of the present numerical method by simulating

unsteady transonic flows on a chpped delta wing, which
contain a leading-edge separation. So far, unsteady



physicsmorecloselythanthecoordinateupwindmeth-
ods.Thecomputedresultsconfirmedthehigherresolu-
t2on of the present algorithm over the central-difference
method as well as over other upwind methods, la In this

work, the streamwise upwind algorithm is applied to

compute the inviscid ceU-interface fluxes. A second-
order central-difference evaluation is applied to the vis-

cous term. The complete algorithm can be found in
Refs. 8 and 13.

An implicit method is used for the time integra-

tion because the computational efficiency of the method

is critical for expensive unsteady viscous calculations.

The method chosen here is the LU-ADI (lower-upper

factored, alternating direction implicit) method 14 be-

cause it requires only scalar bidiagonal matrix inver-
sions. See Refs. 15 and 16 for additional details.

The aeroelastic equation of motion (Eq. (5)) is

solved by a mtmerical integration technique based on
the linear acceleration method. 17

Aeroelastic Configuration Adaptive Grids

One of the major deficiencies in computational

aerodynamics using the Navier- Stokes equations lies

in the area of grid generation. For steady flows, the ad-

vanced techniques such as zonal grids is are being used.

Grid generation techniques for aeroelastic calculations,

which involve moving components, are in early stages of

development. In Ref. 7, aeroelastic configuration adap-

tive dynamic gridswere successfullyused forcomputing

time-accurateaeroelasticresponsesofswept wings. In

thiswork, a similartechnique isused.

Aeroelastic Equations of Motion

The governing aeroelasticequations ofmotion of a

flexiblewing are solved using the Rayleigh-Ritz

method. In thismethod, the resultingaeroelasticdis-

placements at any time are expressed as a functionof a

finiteset of assumed modes. The contributionofeach

assumed mode to the totalmotion isderivedby La-

grange'sequation. Furthermore, itisassumed that the

deformation of the continuous wing structurecan be

representedby deflectionsat a set of discretepoints.

This assumption facilitatesthe use of discretestruc-

turaldata, such as the modal vector,the modal stiff-

ness matrix, and the modal mass matrix. These can

be generated from a finite-elementanalysisorfrom ex-

perimental influence-coefficientmeasurements. In this

study,the finite-elementmethod isused to obtain the

modal data.

Itisassumed that the deformed shape ofthe wing

can be representedby a setofdiscretedisplacementsat

selectednodes. From the modal analysis,the displace-

ment vector {d} can be expressed as

(d) = [¢]{q} (4)

where [¢] is the modal matrix and {q} is the general-

ized displacement vector. The final matrix form of the

aeroelastic equations of motion is

[M]{4) + [G]{4} + [g]{q} = {F} (5)

where [M], [G], and [K] are modal mass, damping, and
stiffness matrices, respectively. (F} is the aerodynamic

force vector defined as (])pU_[¢]T[A]{ACp} and [A]

is the diagonal area matrix of the aerodynamic control

points.

Results

Numerical schemes used for flow calculations in

aeroelasticity must guarantee the correct calculation of

amplitude and phase of unsteady pressures. To verify

the accuracy of the present code for simulating the com-

plicated flow field containing a leading-edge vortex and

a shock wave, test cases are chosen from the experiment

on a clipped delta wing undergoing prescribed pitching

motion. 9 Since the experiment was conducted using a

Freon test medium, the ratio of specific heats ",/is set

to 1.135 in the following computations.

Steady Pressures

Steady-state calculations have been performed to

examine the validity of the numerical procedure and

the computational grid. The model planform geome-
try is shown in Fig. 1. The wing has a leading-edge

sweep angle of 50.4 ° and a 6%-thick circular-arc airfoil

section. The lines, A, B, and C, indicate the spanwise

locations of the pressure orifices in the experiment. Fig-

ure 2 shows the grid generated algebraically in the C-H

topology. The _, _/, and _ coordinates represent the

chordwise, spanwise, and normal (to the wing surface)

directions, respectively. The grid contains 151 x 25 x 34

points.

The present grid is fairly coarse compared with the

grids used in the typical steady-state computations. 1-3

The number of grid points was determined to compro-

mise the accuracy and the total computational time.

Unsteady computations require more computational
time than the steady-state computations. With the

present grid, a typical unsteady case can be computed

within 5 ha" by using a Cray YMP comput_ with a

single processor. (The code requires about 19 psec per



at the68%sectionin Fig.8showsnoeffectdueto the
leading-edgevortex,it is inconsistentwith the other
data. Overall,thenumericalresultsshowfairlygood
agreementwith theexperimentaldata.Again,thedif-
ferenceof shockmotiondueto theMachnumbersand
thedifferenceof thevortexmotiondueto theanglesof
attackaresuccessfullycaptured.

Figure 12 shows the comparison of unsteady pres-
sures between the modified and unmodified Baldwin-

Lomax turbulence models for the fourth case (Fig. 11).

To see the difference clearly, the unsteady pressures are

plotted in the magnitude and phase angle here. The

improvements due to the modification of the turbu-

lence model are seen in both magnitude and phase angle

where the leading-edge vortex exists. The results also

confirm that the present grid has reasonable resolution

for the present unsteady flow fields, even though the

grid is fairly coarse. Further improvements and grid

refinements will be needed to achieve a better agree-

ment at the outboard sections.

Rigid and Flexible Ramp Motions

In maneuvering, aircraft often undergo rapid ramp

motions. During such motions, flow unsteadiness and

wing flexibility play important roles. In this section, the

applicability of the present development to computing
such flow fields is demonstrated.

Computations are performed for rigid and flexible

wings in ramp motion. Structural properties of the

wing were selected to represent a typical fighter wing.

Figure 13 shows the mode shapes and the frequencies
of the first four normal modes for the clipped delta

wing used in the following computations. The dynamic

pressure is set to be 1.0 psi. Test cases consider 4 and

10 ° ramp motions for both rigid and flexible wings.

4 ° Ramp Motion

Figure 14 shows the comparisons of the sectional

lift responses between the rigid and flexible wings at
Moo --- 0.9 and Re¢ = 15 x 106 for the wing ramping

up to 4° with a pitch rate of A = 0.04. The pitch rate

A is defined as &c/U_. The data are plotted at 34%,
54%, 68%, and 90% semispan sections. The unsteady

computations are started from the converged steady-

state solution at 0 ° angle of attack.

In the rigid-wing case, the lift responses at the in-

board sections settle down quickly after the ramp mo-

tion stops, and the flow approaches the steady-state
values. At the 90% section, however, the lift contin-

ues to increase for a short period after the ramp mo-

tion stops. This corresponds to the movement of the

leading-edge vortex as indicated in the corresponding

pressure history shown in Fig. 15. In Fig. 15. the

pressure distributions are plotted every 100 time steps.

The ramp motion ends at 600 time steps (t _- 0.04 sec),
which corresponds to the sL'cth plot from the bottom.

At the 90% section in Fig. 15d, a leading-edge vortex is
formed and lifts off from the wing surface. This results
in the increase and then a decrease of the sectional lift

shown in Fig. 14. At the other inboard sections in Fig.

15. the pressure distributions become similar to those

in Fig. 6. i.e., the leading-edge vortex remains without

interacting with the shock wave. Thus. the correspond-

ing sectional lift stays nearly steady with minor fluctu-
ations due to the movement of the vortex, as seen in

Fig. 15a.

In contrast to the rigid-wing case, Fig. 14 shows

that the sectional lift responses of the flexible wing are

oscillatory. The primary effect of the flexibility is the

reduction of the lift at most of the spanwise sections

due to the reduced angles of attack. Figure 16 shows

the corresponding pressure history plots. The plots in

Fig. 16c and d show the shedding of the leading-edge

vortex in comparison to the plots of the rigid wing in

Fig. 15c and d. In addition, Fig. 14 shows that the

90% sectional lift response of the flexible wing has the

low-frequency primary oscillation perturbed by a high-

frequency vortex shedding. The low-frequency primal"

oscillation corresponds to the structural oscillation as

shown later. The high-frequency perturbation corre-

sponds to the shedding of the vortex that can be seen

in the pressure plots of Fig. 16d.

Computations (not shown) were also carried out

for the flexible-wing ramping from 0 ° to 3 ° and from

0 ° to 5 ° at the same pitch rate as the 4 ° case. The 4 °

case shows the largest high-frequency perturbation. In

the 3 ° case, the vortex is not strong enough to disturb

the lift response. The vortex shedding is found only at

the 90% section. In the 5 ° case, the vortex lifts off from

the wing surface so that the structural oscillation does

not cause the perturbation seen at the lower angles of
attack. The 10 ° case discussed in the next section does

not show the perturbation either.

An aeroelastic reduction of the local angle of attack

results in a delay of the lift increase of the flexible wing

for a short period after the ramp motion stops (about

0.04 < t < 0.11 in Fig. 14). Figure 17 shows the in-
stantaneous density contour plots of the 90% spanwise

section at 800 time steps (t "_ 0.05 sec). The contours

are plotted at intervals of 0.02 (bold line indicates free-

stream density, 1.0). The plots show that the leading-

edge vortex on the flexible wing is weaker than that

on the rigid wing. Figure 18 shows the corresponding
deformation of the flexible wing. The solid lines indi-

c.ate the corresponding surface of the rigid wing. The
actual displacement of the leading edge at the wing tip



ConcludingRemarks

In thispaper,acomputationalprocedureforcom-
putingtheunsteadytransonicflowsassociatedwith the
leading-edgevortexon a clippeddeltawing,includ-
ing flexibility,hasbeenpresented.Theprocedureis
basedona time-accuratecomputationalmethodcom-
binedwith theuseof aeroelasticallyadaptivedynamic
grids. The flow is modeled using the Navier-Stokes

equations. The flow equations are coupled with the

structural equations to account for the flexibility. The

numerical procedure has been verified through the com-

parisons with the experiment for the unsteady pitching

cases on the rigid clipped delta wing. The main flow

structures are successfully captured using a fairly coarse

grid.

The ramp motion cases have demonstrated the efo

fects of unsteadiness of the flow field and flexibility of

the wing. The primary effect of the flexibility is the re-

duction of the lift due to the deformation of the wing.

Interaction of the leading-edge vortex with the shock

wave has significant effects on the wing responses. For

the 4° ramp motion, the vortex shedding occurs at the

wing tip due to the flexibility. For the 10° ramp motion,
a possible vortex breakdown is obsenz_d. The interac-

tion with the shock wave plays an essential role in the

process of the breakdown observed in the present calcu-

lation. A further grid-refinement study will assess the

validity of the present observations.
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Abstract of a proposed paper for the presentation at AIAA Atmospheric Flight Me-

chanics Conference, August 19-21, 1991j New Orleans, Louisiana.

Unsteady Navier-Stokes Computations on a Wing-Body

Configuration in Ramp Motions

Shigeru Obayashi,* Guru P. Guruswamy** and Eugene L. Tu***

NASA Ames Research Center, Moffett Field, California

Summary

Unsteady Navier-Stokes computations have been carried out for simulating tran-

sonic flows over a wing-body configuration undergoing prescribed pitching and ramp

motions, including flexible modes. The unsteady Navier-Stokes code used in this study

has been validated by comparing the numerical solutions with experimental data for

pitching motion cases about wings in transonic flow-fields from a small angle-of-attack

to a relatively high angle-of-attack, where a leading-edge vortex develops. In this work,

the method has been extended to handle wing-body configurations. Steady and un-

steady results at transonic Mach numbers will be shown for the wing-body model and

comparisons are made with the available experimental and numerical data. The ramp

motion covers angles of attack where a vortex breakdown is observed in the experiment.

The effects of unsteadiness will be discussed in detail.

Introduction

In the last two decades, there have been extensive developments in computa-

tional aerodynamics, which constitutes a major part of the general area of computa-

* Research Scientist, MCAT Institute, San Jose, California. Member AIAA.

** Research Scientist. AIAA Associate Fellow.

*** Research Scientist. Member AIAA.



viscosity is carefully evaluated to capture the leading-edgeseparation.

In this abstract, the steadyand unsteady results for the ramp motion are pre-

sentedfor the rigid wing-body model. In addition, code validation results from previous

studies 2'4'7 are shown here. Further detailed results including forced flexibihty will be

presented in the full paper. All of the results to be presented in the full paper are new

and have not been submitted to any other meetings or publications.

Governing Aerodynamic Equations and Approximations

The governing equations used in this study is the thin-layer Navier-Stokes equa-

tions written in conservation-law form in a generalized body-conforming curvilinear

coordinate system. Several numerical schemes have been developed to solve these equa-

tions. The present code has two different schemes; the central-difference and upwind

schemes. Detailed formulas will be given in the full paper.

The viscosity coemcient in the thin-layer viscous term is computed as the sum of

#t + #t where the lazninar viscosity, #z, is taken from the freestream laminar viscosity,

assumed to be constant for transonic flows. The turbulent viscosity, _tt, is originally

evaluated by the Baldwin-Lomax algebraic eddy-viscosity model. 1° The modification

of the turbulence model originally developed for crossflow separation by Degani and

Schiff 11 is applied to evaluate the turbulent viscosity of flow-fields containing a leading-

edge vortex. However, for this geometry, this modification has difficulty in locating the

boundary-layer edge, especially at low angles-of-attack where the leading-edge vortex

lies near the wing surface. Thus, the Johnson-King model 12'13 is also applied for

comparison and the results will be discussed in the full paper.

Results

1. Code Calibration on Wings



pressures at the outboard section show that the peaks near the leading edge in the

computed profiles are located more downstream than in the experimental data. This

indicates that the computed leading-edge vortex location is more inboard than was

found in the experiment. This discrepancy between computed and measured data is

widely seen in other numerical results including Ref. 15. Although the Degani-Schiff

correction 11 is used here, there are problems such as the lack of transition modeling in

the Baldwin-Lomax model. Nevertheless, the computed results show good qualitative

agreement with the experiment even for the unsteady cases.

Next, the ramp motion of the same clipped delta wing was investigated. 4 Figure 2

shows pressure histories at Moo = 0.9 for the wing ramping up to 5 degrees with a pitch

rate of A = 0.01. The pitch rate, A, is defined as &c/Uoo. The unsteady computations

are started from the converged steady-state solution at ct = 0.0 °. The results show the

dynamics of vortex and shock development. The corresponding sectional llft curves are

plotted in Fig. 3. Stall can be seen at 90% semispan section.

The third example is a comparison of ramp motions of a typical fighter wing

with different pitch rates? It is well known that the dynamic lift for airfoils can be

increased by increasing pitch rates. Because dynamic lift is an unsteady phenomenon,

and is associated with the presence of vortices, it is important to model it accurately.

In this computation, the Mach number is subsonic and the angle-of-attack varies from

00 to 30*. Figure 4 shows contour plots of the velocity magnitude at various spanwise

locations. The plots indicate the presence of the leading-edge vortex.

To see the effects of increasing pitch rates, computations were made for the three

pitch rates of 0.025, 0.05 and 0.1. The unsteady sectional lift coefficients are plotted

against time in Fig. 5. For all three pitch rates, the stall occurs at the wing-tip before

it occurs at the root section. These plots confirm the increase in the dynamic llft at

higher pitch rates for this fighter wing case except for the inboard sections.

Results in this section verify the validation of the present code to accurately
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of-attack is shown in Fig. 7. Comparisons with the experimental data are given at

wing-span stations of 35, 45, 55 and 85%. The results generally show good agreement

except at the 85% wing-span where the discrepancies are most likely due to the modeling

of the wing-tip. Since detailed geometry data was unavailable for the wing-tip of the

wind-tunnel model, the tip is assumed to be rounded in this study.

At the inboard spanwise locations, the suction peaks due to the leading-edge

vortex appear to be slightly underpredicted. This discrepancy becomes worse as angle-

of-attack increases. However, grid refinement was found to improve the prediction

significantly. 7 In addition, the turbulence model affects the formation of the leading-

edge vortex. The performance of the Johnson-King model 12,]3 is currently being inves-

tigated. In the full paper, these additional numerical issues will be addressed.

c. Unsteady Results

In this abstract, the ramp motion case is shown as a sample result. The compu-

tation was started from the steady-state solution at 4.09 ° angle-of-attack. Then, the

model was ramped up 5 degrees with a pitch rate of A = 0.1. After the angle-of-attack

reached 9.09 °, the model was held stationary. Figure 8 shows the grid and pressure con-

tours on the upper surface of the wing-body model at various angles-of-attack. Figures

8.a thru 8.d show the grid, pressure contours at a -- 4.09 ° (steady-state), a = 7.59 °

(unsteady) and a -- 9.09 ° (unsteady at maximum a), respectively.

Figure 9 shows a time history of pressure responses at the 35, 55 and 85% wing

span locations. The plots show the dynamics of the leading-edge vortex development.

The corresponding total lift curve during ramp-up is plotted in Fig. 10. The dynamic

lift increase is clearly shown. After reaching the maximum angle-of-attack, the lift

coemcient is observed to decrease slowly to the steady-state value. A complete ramp

motion from 0 to 12 degrees is being performed and will be presented in the full paper.

In the steady-state results, TM a vortex breakdown was observed at about 12 ° angle-

of-attack. The effects of unsteadiness will be discussed in detail.
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Fig. 6 Close-up view of wing-body grid.
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a) Grid.

b) a = 4.00 °, steady-state solution.

f I

c) a = 7.59 °, unsteady solution with pitch rate 0.1.

d) a = 9.09 °, unsteady solution at maximum angle-of-attack with pitch rate 0.1.

Fig. 8 Instantaneous pressure contours on the upper surface of a wing-body model in

ramp motion from 4" to 9 ° angle-of-attack.
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Fig. 11 Example of forced elasticity of a wing-body model.


